머신러닝
AI와의 대화를 완전히 바꾸는 10가지 프롬프트 엔지니어링 기법
Google의 69페이지 AI 가이드에서 추출한 10가지 핵심 프롬프트 엔지니어링 기법을 실제 예시와 함께 상세히 설명합니다. AI와의 상호작용을 획기적으로 개선하고 일관된 고품질 결과를 얻는 방법을 배워보세요.
Written by

Reddit vs Anthropic 소송으로 본 AI 데이터 경제의 새로운 전환점
Reddit이 AI 스타트업 Anthropic을 무단 데이터 사용 혐의로 고소한 사건을 통해 살펴보는 AI 시대 데이터 경제의 구조적 변화와 향후 전망. 빅테크와 AI 기업 간 첫 대규모 법적 분쟁이 업계에 미칠 파급효과와 데이터 소유권을 둘러싼 복잡한 이슈들을 심층 분석합니다.
Written by

AI는 통계적 천재, 인간은 맥락적 지혜: LLM과 인간의 개념 형성 방식 차이 분석
스탠포드대와 뉴욕대 연구진이 밝혀낸 LLM과 인간의 개념 형성 방식 차이를 분석한 글입니다. AI가 통계적 압축에 최적화된 반면 인간은 맥락적 풍부함을 우선시한다는 핵심 발견과 함께, 이것이 AI 개발과 활용에 주는 실용적 시사점을 제시합니다.
Written by

AI 프로젝트 실패의 진짜 원인: 데이터 품질이 아닌 데이터 신뢰성
AI 프로젝트의 높은 실패율(80%)의 진짜 원인을 분석하고, 기존 데이터 품질 관리의 한계점을 지적하며, 사전 예방 중심의 데이터 신뢰성 엔지니어링(DRE) 접근법을 제시하는 인사이트 글입니다. TSB Bank 등 실제 사례를 통해 사후 대응의 위험성을 보여주고, 조직 문화 변화의 필요성과 구체적 실천 방안을 제안합니다.
Written by

AI의 마음을 들여다보다: Anthropic의 언어모델 내부 추적 기술 공개
Anthropic이 공개한 혁신적인 AI 해석 가능성 연구를 통해 언어 모델의 내부 사고 과정을 들여다보고, Claude가 다국어 처리, 시 창작, 수학 계산 등을 수행할 때의 놀라운 내부 메커니즘을 분석합니다. 오픈소스로 공개된 Circuit Tracing 도구의 의미와 AI 안전성 연구의 미래 방향을 탐구합니다.
Written by

LLM 파인튜닝 실무 가이드: 언제, 어떻게 시작할 것인가
LLM 파인튜닝의 실무적 접근법을 다룬 가이드입니다. 프롬프트 엔지니어링의 한계를 극복하고, 언제 파인튜닝을 도입해야 하는지, 그리고 단계별 실행 방법과 플랫폼별 시작 가이드를 제공합니다.
Written by

DeepSeek R1-0528: 성능 향상 뒤에 숨겨진 검열 강화의 딜레마
중국 DeepSeek의 새로운 R1-0528 모델이 OpenAI o3와 Gemini 2.5 Pro에 도전하며 오픈소스 AI의 새로운 가능성을 제시한 기술 분석과 업계 트렌드 전망
Written by

작은 모델이 큰 모델을 이기는 시대: MoAA가 제시하는 AI의 새로운 패러다임
Together AI의 MoAA(Mixture-of-Agents Alignment) 기법이 어떻게 작은 AI 모델로 GPT-4o를 능가하는 성능을 달성했는지, 그리고 이것이 AI 업계에 미치는 혁신적 의미를 분석합니다. 집단 지성을 활용한 새로운 AI 훈련 패러다임과 그 실용적 가치를 소개합니다.
Written by

Claude 4의 숨겨진 비밀: AI가 아첨하지 않는 이유
Claude 4의 시스템 프롬프트 분석을 통해 알아본 AI가 아첨하지 않는 이유와 AI 모델의 행동 제어 메커니즘, 그리고 이것이 AI 업계와 사용자에게 미치는 영향에 대한 심층 분석
Written by

